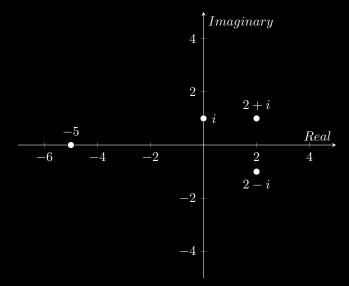
1 Complex notes (Boyle's notes) odds, 10.1 WS

1.1 Problem 1

1. Plot the following points in the complex plane: i, 2 - i, 2 + i, -5.

Begin by drawing a real and imaginary axis. Then *i* has coordinates (0, 1), 2-i has coordinates (2, -1), 2+i has coordinates (2, 1), and -5 has coordinates (-5, 0):



1.2 Problem 3

3. (Multiplicative inverse) Let z = a + ib be a nonzero complex number (so at least one of the real numbers a, b is nonzero). Then 1/z is the number such that (z)(1/z) = 1, and there is only one such number.

(i) Show that $1/z = \frac{a-ib}{a^2+b^2}$ [Hint: Just show that multiplying the right hand side by a + ib produces the number 1; then the right hand side must be a correct formula for 1/z.]

- (ii) Compute real numbers a, b such that 1/(2+3i) = a + ib.
- (iii) Compute real numbers a, b such that (1 2i)/(2 + 3i) = a + ib.
- (iv) If the polar form of z is $Re^{i\theta}$, then what is the polar form of 1/z?

(i) Show that $1/z = \frac{a-ib}{a^2+b^2}$

Note that $a + ib \cdot \frac{a - ib}{a^2 + b^2} = \frac{a^2 + aib - aib - (ib)^2}{a^2 + b^2} = \frac{a^2 - (-b^2)}{a^2 + b^2} = 1$. Thus $z \cdot 1/z = 1$, so $\frac{a - ib}{a^2 + b^2}$ must be the correct formula for 1/z.

(ii) Compute real numbers a, b such that 1/(2+3i) = a + ib.

By the formula, $1/(2+3i) = \frac{2-3i}{2^2+3^2} = \frac{2}{13} - \frac{3}{13}i$.

(iii) Compute real numbers a, b such that (1 - 2i)/(2 + 3i) = a + ib.

By part 2,

$$\frac{1-2i}{2+3i} = (1-2i)(\frac{2}{13} - \frac{3}{13}i) = (\frac{2}{13} - \frac{3}{13}i) - 2i(\frac{2}{13} - \frac{3}{13}i) = \frac{2}{13} - \frac{3}{13}i - \frac{4}{13}i - \frac{6}{13} = -\frac{4}{13} - \frac{7}{13}i$$

Thus $a = -4/13$, $b = -7/13$.

(iv) If the polar form of z is $Re^{i\theta}$, then what is the polar form of 1/z?

Note $1/z = 1/(Re^{i\theta}) = \frac{1}{R} \cdot \frac{1}{e^{i\theta}} = \frac{1}{R}e^{-i\theta}$. This is thus the polar form of 1/z with r = 1/R and angle $-\theta$.

1.3 Problem 5

5. Now consider a complex number z written in various forms: $z = x + iy = e^{a+ib} = Re^{i\theta}$, where x, y, a, b, R and θ are real numbers. (i) Give formulas using x and y for R and $\tan(\theta)$. For which z are the formulas valid?

- (ii) Give formulas for R and in terms of x and y.
- (iii) Compute the polar form of e^{2-3i} .
 - (i) Give formulas using x and y for R and $tan(\theta)$. For which z are the formulas valid?

We have $R = \sqrt{x^2 + y^2}$ and $\tan(\theta) = \frac{y}{x}$ for all z with $x \neq 0$.

(ii) Give formulas for R and in terms of x and y.

We have $R = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(\frac{y}{x})$.

(iii) Compute the polar form of e^{2-3i} .

The polar form of $e^{2-3i} = e^2 \cdot e^{-3i}$ is $Re^{i\theta}$ with $R = e^2$, $\theta = -3$.

1.4 Problem 7

- 7. (Complex conjugates) Let z = a + ib; then the complex conjugate \bar{z} is defined to be $\bar{z} = a ib$.
- (i) How are the locations of z and \bar{z} in the complex plane related?
- (ii) Check that $z\bar{z} = |z|^2 = a^2 + b^2$.

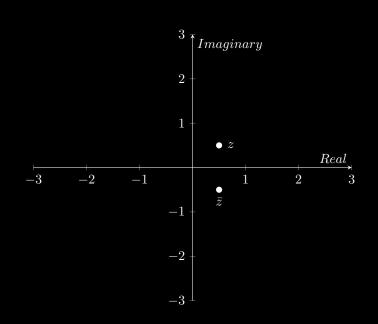
(iii) Show that if z is nonzero, then $1/z = \bar{z}/|z|^2$. (Multiply z by this expression and check that the product is 1.)

(iv) Use the formula in (iii) to find 1/z if z = 2 + 3i.

(i) How are the locations of z and \bar{z} in the complex plane related?

The angle of z is made negative so \bar{z} is a reflection of z through the Real axis; an example is

$$e^{i\pi/4} \to e^{i\pi/4} = e^{-i\pi/4}$$



(ii) Check that $z\overline{z} = |z|^2 = a^2 + b^2$.

Note $z\overline{z} = (a+bi)(a-bi) = a^2 + abi - abi + (bi)^2 = a^2 + b^2 = (\sqrt{a^2 + b^2})^2 = |z|^2$.

(iii) Show that if z is nonzero, then $1/z = (\bar{z})/(|z|^2)$. (Multiply z by this expression and check that the product is 1.)

By our formula from problem 3, $1/z = \frac{a-ib}{a^2+b^2} = \frac{\bar{z}}{|z|^2}$.

(iv) Use the formula in (iii) to find 1/z if z = 2 + 3i.

We found this in problem 3: 1/(2+3i) = 2/13 - i(3/13).

1.5 Problem 9

9. From the last problem, it follows that if p(z) is a polynomial with real coefficients and w is a complex number and p(w) = 0, then also $p(\bar{w}) = 0$. (i) Check that any polynomial of the form $q(z) = (z - w)(z - \bar{w})$ is a polynomial with real coefficients.

(ii) (Real Factorization Theorem) Deduce using the Factorization The- orem that any nonconstant polynomial with only real coefficients can be factored as a product of polynomials with only real coefficients and with degree one or two.

(i) Check that any polynomial of the form $q(z) = (z - w)(z - \bar{w})$ is a polynomial with real coefficients.

Well $q(z) = (z-w)(z-\bar{w}) = z^2 - wz - \bar{w}z + w\bar{w} = z^2 - (a+bi+(a-bi))z + a^2 + b^2 = z^2 - (2a)z + (a^2+b^2)$, so q(z) is a polynomial with real coefficients.

(ii) (Real Factorization Theorem) Deduce using the Factorization The- orem that any nonconstant polynomial with only real coefficients can be factored as a product of polynomials with only real coefficients and with degree one or two.

Well, the factorization theorem (from Boyle's notes) states that if p(z) is a polynomial of degree $n \ge 1$, with real (or complex) coefficients, say $p(z) = c_n z^n + c_{n-1} z^{n-1} + \ldots + c_1 z + c_0$, then p can be factored as a product of linear terms $p(z) = c_n (z - z_1)(z - z_2) \cdots (z - z_n)$ where the numbers $z_1, z_2, \ldots z_n$ are the roots of p(z) (possibly some roots appear more than once).

Thus if p(x) is any nonconstant polynomial with only real coefficients, and z is a complex root (with nonzero imaginary part), then $z = z_i$ for some i, and by part (i), \bar{z} is also a root, so $\bar{z} = z_j$ for some $j \neq i$. Then $(x-z)(x-\bar{z})$, a polynomial with only real coefficients of degree 2 polynomial, in the factorization.

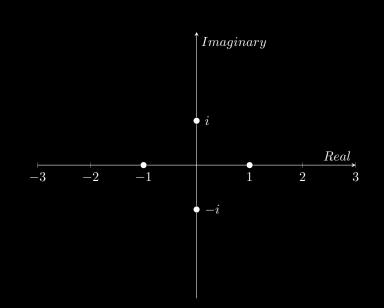
If z is a real root (so 0 imaginary part) then by the factor theorem (x - z) appears. Thus we can split $p(x) = \prod_{z \text{ complex root of } p, \text{Im}(z) > 0} (x - z)(x - \overline{z}) \cdot \prod_{z \text{ real root of } p} (x - z)$ into degree 1 or 2 polynomials with only real coefficients (by part (i) $(x - z)(x - \overline{z})$ has only real coefficients).

1.6 Problem 11

11. (Roots of unity) Let n be a positive integer. The complex numbers has its nth power equal to 1. Likewise, if k is a nonnegative integer in the set 0, 1, ..., n - 1, then $e^{2\pi i k/n}$ also has its nth power equal to 1. Such a number is called an nth root of unity. These numbers can be drawn on the unit circle in the complex plane.

- (i) Draw all the fourth roots of unity on the unit circle.
- (ii) Draw (in another picture) all the eighth roots of unity.
 - (i) Draw all the fourth roots of unity on the unit circle.

The fourth roots of unity are



 $e^{0} = 1, e^{2\pi i/4} = e^{(\pi/2)i} = i, e^{2\pi i \cdot 2/4} = e^{\pi i} = -1, e^{2\pi i \cdot 3/4} = e^{(3\pi/2)i} = -i$

Thus:

(ii) Draw (in another picture) all the eighth roots of unity.

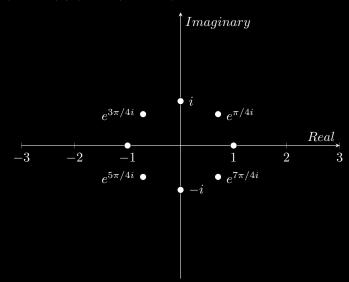
The eighth roots of unity satisfy $z^8 = 1$, so in particular any fourth root satisfies this equation since

k=0

1

 $z^{4} = 1 \text{ means } (z^{4})^{2} = z^{8} = 1. \text{ Here are all the eighth roots of unity:} \begin{array}{c} k = 1 \\ k = 2 \\ k = 3 \\ k = 4 \\ k = 5 \\ k = 6 \\ k = 7 \\ k = 7 \\ e^{7\pi/4i} \end{array} e^{2\pi/8i} = e^{\pi/4i} \\ e^{3\pi/4i} \\ e^{5\pi/4i} \\ k = 6 \\ e^{7\pi/4i} \end{array}$

Note $e^{i\pi/4} = \cos(\pi/4) + i\sin(\pi/4) = \sqrt{2}/2 + i\sqrt{2}/2 \approx 0.707 + i0.707$, etc.:

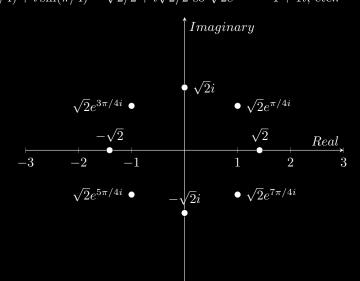


1.7 Problem 13

13. If n is a positive integer and M is a positive real number, then the equation $z^n = M$ has exactly the following n solutions: $M^{1/n}e^{2\pi ki/n}$, k = 0, 1, 2, ..., n - 1.

Find all solutions of the equation $z^8 = 16$, and plot these solutions in the complex plane.

These will be almost the same solutions as in Problem 11, just with adjusted magnitude $M^{1/n} = \sqrt[8]{16} = (2^4)^{1/8} = \sqrt{2}$:



1.8 Problem 15

15. (DeMoivre) To understand why $e^{iz} = \cos(z) + i\sin(z)$, compute by hand the first eight terms of these series, and compare.

The series involved are
$$e^{iz} = \sum_{n\geq 0} \frac{1}{n!} (iz)^n$$
, $\cos(z) = \sum_{n\geq 0} \frac{(-1)^n}{(2n)!} z^{2n}$, and $\sin(z) = \sum_{n\geq 0} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$.

The first eight terms of $\cos(z) + i\sin(z)$ are $1 + iz - z^2/2 - iz^3/3! + z^4/4! + iz^5/5! - z^6/6! - iz^7/7!$

The first eight terms of e^{iz} are

 $1+(iz)+(iz)^2/2+(iz)^3/3!+(iz)^4/4!+(iz)^5/5!+(iz)^6/6!+(iz)^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+z^4/4!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+iz^5/5!-z^6/6!-iz^7/7!=1+iz-z^2/2-iz^3/3!+iz^5/5!-z^6/6!-iz^5/5!-z^6/6!-iz^5/5!-z^6/6!-iz^5/5!-z^6/6!-iz^5/5!-z^6/6!-iz^5/5!-z^6/6!-iz^5/5!-z^6/6!-iz^5/5!-z^6/6$

2 WS 10.1

2.1 Problem 1

1. Consider the point P = (x, y) with rectangular coordinates $(1, -\sqrt{3})$. Let (r, θ) be polar coordinates of P, with r > 0 and $0 \le \theta < 2\pi$.

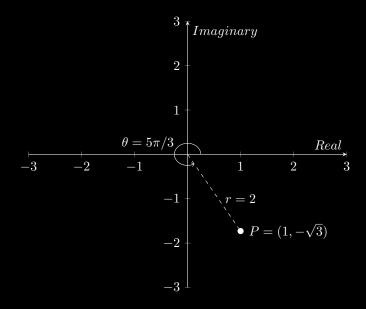
(a) Draw P in the usual Cartesian plane. Then find the values of r and θ , giving reasons.

(b) For the values of r and θ found in part (a), draw on the same large graph (different from the graph in part (a)) the points with the following polar coordinates and label each:

$$(\mathbf{r},-\theta),$$
 $(\mathbf{r},\pi-\theta),$ $(\mathbf{r},\pi+\theta),$ $(-\mathbf{r},\theta),$ $(-\mathbf{r},\pi-\theta),$ $(-\mathbf{r},\pi/2-\theta)$

(a) Draw P in the usual Cartesian plane. Then find the values of r and θ , giving reasons.

Since $P = (1, -\sqrt{3})$, we find the distance from the origin is $r = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{4} = 2$, with angle $\theta = \tan^{-1}(-\sqrt{3}/1) = -\pi/3$. Since we want $0 \le \theta < 2\pi$, add 2π to $-\pi/3$, obtaining $5\pi/3$. Thus the polar form is $(2, 5\pi/3)$. In the Cartesian plane P is:



(b) For the values of r and θ found in part (a), draw on the same large graph (different from the graph in part (a)) the points with the following polar coordinates and label each:

$$(\mathbf{r},-\theta), (\mathbf{r},\pi-\theta), (\mathbf{r},\pi+\theta), (-\mathbf{r},\theta), (-\mathbf{r},\pi-\theta), (-\mathbf{r},\pi/2-\theta)$$

Note $(r, \theta) = (2, 5\pi/3)$, so

$$(r, -\theta) = (2, -5\pi/3) = (2, \pi/3),$$

 $(r, \pi - \theta) = (2, \pi - 5\pi/3) = (2, -2\pi/3) = (2, 4\pi/3),$

$$(r, \pi + \theta) = (2, \pi + 5\pi/3) = (2, 8\pi/3) = (2, 2\pi/3),$$

$$(-r, \theta) = (-2, 5\pi/3) = (2, 5\pi/3(+\pi)) = (2, 8\pi/3) = (2, 2\pi/3),$$

$$(-r, \pi - \theta) = (r, \pi - \theta(+\pi)) = (r, 2\pi - \theta) = (r, -\theta)$$

and finally

$$(-r,\pi/2-\theta) = (2,\pi/2-\theta(+\pi)) = (2,\pi/2-5\pi/3+\pi) = (2,3\pi-10\pi)/6(+\pi) = (2,-7\pi/6(+\pi)) = (2,-\pi/6) = (2,11\pi/3)$$

. Then the points we will graph are

$$\begin{aligned} \mathbf{r}, -\theta &= (2, \pi/3), & (\mathbf{r}, \pi - \theta) &= (2, 4\pi/3), & (\mathbf{r}, \pi + \theta) &= (2, 2\pi/3), \\ \mathbf{r}, \theta &= (2, 2\pi/3), & (-\mathbf{r}, \pi - \theta) &= (2, \pi/3), & (-\mathbf{r}, \pi/2 - \theta) &= (2, 11\pi/6) \end{aligned}$$

$$\begin{aligned} & (-r, \theta) &= (r, \pi + \theta) \bullet \\ & (-r, \theta) &= (r, \pi - \theta) \bullet \\ & (r, \pi - \theta) \bullet \\ & (2, 4\pi/3) \end{aligned}$$

$$\begin{aligned} & (2, \pi/3) \\ & \bullet (r, -\theta) &= (-r, \pi - \theta) \\ & (2, 11\pi/6) \end{aligned}$$

2.2 Problem 2

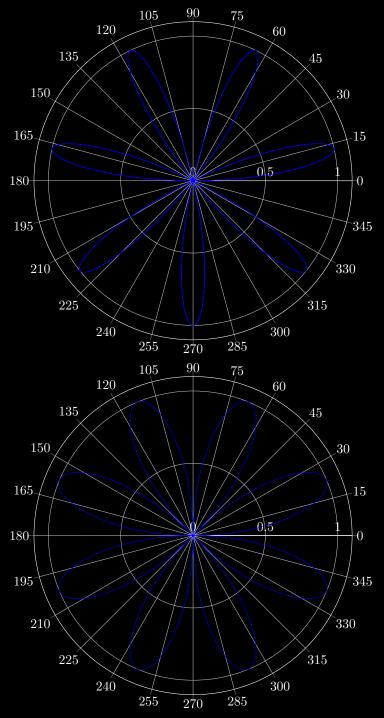
2. (a) Plot the graphs of $r = \sin(7\theta)$ and $r = \sin(4\theta)$, for $0 \le \theta \le 2\pi$. Which rose is traced out twice, and which rose is traced out once as θ increases from 0 to 2π .

(b) Let n be a positive integer, and consider the graph of $r = \sin(n\theta)$. Determine the number of leaves when n is odd, and the number of leaves when n is even. (The reason there is a difference between even n and odd n is interesting. Can you provide the reason?)

(c) Find a polar equation for a 12-leaved rose.

(a) Plot the graphs of $r = \sin(7\theta)$ and $r = \sin(4\theta)$, for $0 \le \theta \le 2\pi$. Which rose is traced out twice, and which rose is traced out once as θ increases from 0 to 2π .

To plot $r = \sin(7\theta)$ plot significant points for the function, such as $0, (\pi/2)/7, \pi/7$ etc. and keep track of the direction things are travelling.



The rose $r = \sin(7x)$ is traced out twice while the rose $r = \sin(4x)$ is traced out once: (note $(r, \theta) = (1, (\pi/2)/7) = (-1, \pi/14(+\pi)) = (-1, 15\pi/14)$ and $\sin(7 \cdot (15\pi/14)) = \sin(15\pi/2) = \sin(3\pi/2) = -1$, so when θ increases to $15\pi/14$ we return to the point $(1, \pi/14)$. This happens in general: thus we trace out the each point twice in the graph of $\sin(7x)$.

(b) Let n be a positive integer, and consider the graph of $r = \sin(n\theta)$. Determine the number of leaves when n is odd, and the number of leaves when n is even. (The reason there is a difference between even n and odd n is interesting. Can you provide the reason?) The number of leaves is n when n is odd, and the number of leaves when n is even is 2n. The reason for the difference is that $\sin(n(\theta + \pi)) = \sin(n\theta + n\pi) = \sin(n\theta)$ when n is even, while $\sin(n\theta + n\pi) = -\sin(n\theta)$ when n is odd.

Thus if $r = \sin(n\theta)$, when n is even, the points $(\sin(n\theta), \theta)$ and $(\sin(n(\theta + \pi)), \theta + \pi)$ are distinct on the graph for each θ , so the graph from $[0, \pi]$ is repeated distinctly on $[\pi, 2\pi]$ (compare this with the graph above).

When n is odd, the points $(\sin(n\theta), \theta)$ and

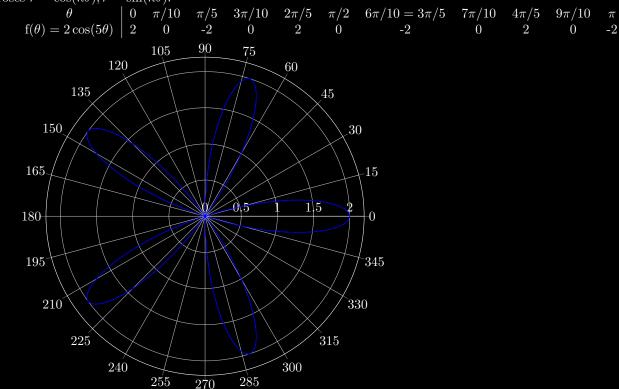
$$(\sin(n(\theta + \pi)), \theta + \pi) = (-\sin(n\theta), \theta + \pi) = (\sin(n\theta), \theta + \pi(+\pi)) = (\sin(n\theta), \theta)$$

are the same, so the graph on $[\pi, 2\pi]$ retraces the graph from $[0, \pi]$.

2.3 Problem 3

3. Suppose that you are asked to sketch the graph of $r = 2\cos(5\theta)$, without the help of a calculator. Discuss how you would proceed. Indicate what values of θ you would use to assist you in plotting significant points on the graph, and indicate what happens on the graph between successive significant points. Then sketch the graph of $r = 2\cos(5\theta)$.

I would proceed by plotting the significant points $\theta = 0, (\pi/2)/5, \pi/5, (3\pi/2)/5, 2\pi/5, \dots$ etc. (incrementing by $\pi/10$) and keep track of the direction of the graph. Use the fact that $\pi/10$ is closer to 0 than known angle $\pi/6, 2\pi/5$ is a little smaller than $2\pi/4 = \pi/2$, etc.



We could also use what we know from problem 2, that we need only plot from 0 to π for odd-n leaved roses $r = \cos(n\theta), r = \sin(n\theta)$.

2.4 Problem 4

4. Consider the lemniscate $r^2 = 4\sin(2\theta)$, for $0 \le \theta \le 2\pi$.

(a) Sketch the lemniscate.

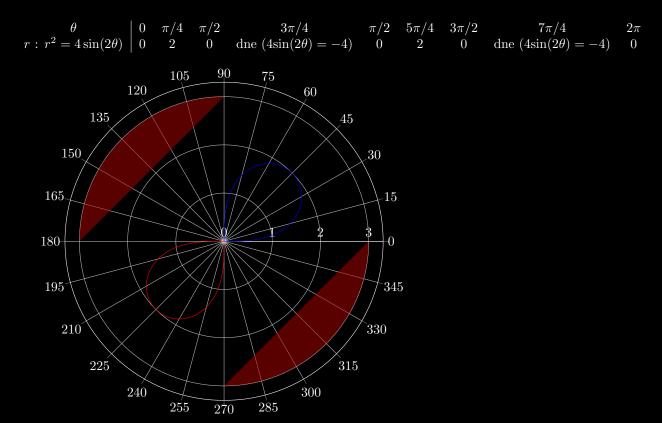
(b) For what values of θ in $[0, 2\pi]$ is there no real value of r? Indicate these values of θ on the graph in part (a).

(c) Find $\int_0^{2\pi} \frac{1}{2} (4\sin(2\theta)) d\theta$. Evidently the value of the integral is not the area A of the region enclosed by the lemniscate. Why? What is wrong with the given integral?

(d) Find the area A enclosed by the lemniscate. (Hint: Choose limits of integration judiciously.)

(a) Sketch the lemniscate.

To sketch the lemniscate, we consider significant points:



(b) For what values of θ in $[0, 2\pi]$ is there no real value of r? Indicate these values of θ on the graph in part (a).

If $\theta \in (\pi/2, \pi) \cup (3\pi/2, 2\pi)$, then $4\sin(2\theta) < 0$, so there's no real r with $r^2 = 4\sin(2\theta)$ since $r^2 \ge 0$ for any real number r. These values of θ correspond to the quadrants $\pi/2 < \theta < \pi$, $3\pi/2 < \theta < 2\pi$ with red in them.

(c) Find $\int_0^{2\pi} \frac{1}{2} (4\sin(2\theta)) d\theta$. Evidently the value of the integral is not the area A of the region enclosed by the lemniscate. Why? What is wrong with the given integral?

The integral is $\int_0^{2\pi} \frac{1}{2} (4\sin(2\theta)) d\theta = 2[-\frac{1}{2}\cos(2\theta)]_0^{2\pi} = (-1) - (-1) = 0$. This is incorrect since our integrand $r^2 = (f(\theta))^2 = 4\sin(2\theta)$ ignores the fact that $r^2 > 0$. Integrating $4\sin(2\theta)$ from 0 to 2π will allow negative areas, which we must avoid.

(d) Find the area A enclosed by the lemniscate. (Hint: Choose limits of integration judiciously.)

We need to adjust our bounds from $0 \le \theta \le 2\pi$ to $0 \le \theta \le \pi/2$ and $\pi \le \theta \le 3\pi/2$ to avoid negative values for the integrand $\frac{(f(\theta))^2}{2}$ of $A = \int_0^{2\pi} \frac{r^2}{2} d\theta$. Also, the graph is symmetric about the origin so $\int_0^{\pi/2} r^2/2d\theta = \int_{\pi}^{3\pi/2} r^2/2d\theta$. Then we have $A = \int_0^{\pi/2} 4\sin(2\theta)d\theta + \int_{\pi}^{3\pi/2} \frac{1}{2}(4\sin(2\theta))d\theta = 2\int_0^{\pi/2} \frac{1}{2}(4\sin(2\theta))d\theta = [-2\cos(2\theta)]_0^{\pi/2} = (-2(\cos(\pi/2)) - (-2\cos(0)) = (-2 \cdot -1) + 2 = 4$. Thus A = 4.

2.5 Problem 5

5. Write down a formula in polar coordinates for a function whose graph has the given symmetry, and draw the graph of the function.

- (a) symmetry with respect to only the origin
- (b) symmetry with respect to only the x axis
- (c) symmetry with respect to only the y axis

To begin this problem we should also note the formal conditions for a polar function to be symmetric:

Formally, symmetry about the origin means if (r, θ) satisfies the equation (i.e. is on the graph), then $(-r, \theta)$ or $(r, \pi + \theta)$ also satisfies it.

Symmetry about the x axis means if (r, θ) satisfies the equation (i.e. is on the graph), then $(r, -\theta)$ or $(-r, \pi - \theta)$ is on the graph.

Lastly, symmetry about the origin means if (r, θ) satisfies the equation (i.e. is on the graph), then $(-r, -\theta)$ or $(r, \pi - \theta)$ also satisfies it.

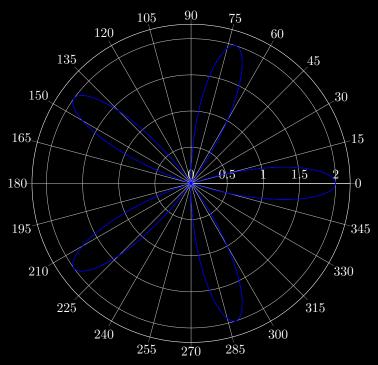
(a) symmetry with respect to only the origin

Notice the graph from Problem 4 works: $r^2 = 4\sin(2\theta)$. Note that symmetry with respect to only the origin means it is NOT symmetric with respect to the x or y axes alone.



(b) symmetry with respect to only the x axis

The graph of $r=2\cos(5\theta)$ from Problem 2 (section 2.3 in this file) works:



(c) symmetry with respect to only the y axis

Similar to (b), the graph of $r = 2\sin(5\theta)$ works:

